发布日期:2016-02-29 10:58 来源: 标签: 编程语言 C++开发语言 C++单例模式 C++设计模式
全局变量在项目中是能不用就不用的,它是一个定时炸弹,是一个不安全隐患,特别是在多线程程序中,会有很多的不可预测性;同时,使用全局变量,也不符合面向对象的封装原则,所以,在纯面向对象的语言Java和C#中,就没有纯粹的全局变量。那么,如何完美的解决这个日志问题,就需要引入设计模式中的单例模式。
      全局变量在项目中是能不用就不用的,它是一个定时炸弹,是一个不安全隐患,特别是在多线程程序中,会有很多的不可预测性;同时,使用全局变量,也不符合面向对象的封装原则,所以,在纯面向对象的语言Java和C#中,就没有纯粹的全局变量。那么,如何完美的解决这个日志问题,就需要引入设计模式中的单例模式。
单例模式
     何为单例模式,在GOF的《设计模式:可复用面向对象软件的基础》中是这样说的:保证一个类只有一个实例,并提供一个访问它的全局访问点。首先,需要保证一个类只有一个实例;在类中,要构造一个实例,就必须调用类的构造函数,如此,为了防止在外部调用类的构造函数而构造实例,需要将构造函数的访问权限标记为protected或private;最后,需要提供要给全局访问点,就需要在类中定义一个static函数,返回在类内部唯一构造的实例。意思很明白,使用UML类图表示如下。
UML类图

代码实现
单例模式,单从UML类图上来说,就一个类,没有错综复杂的关系。但是,在实际项目中,使用代码实现时,还是需要考虑很多方面的。
实现一:
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
if (m_Instance == NULL )
{
m_Instance = new Singleton ();
}
return m_Instance;
}


static void DestoryInstance()
{
if (m_Instance != NULL )
{
delete m_Instance;
m_Instance = NULL ;
}
}
// This is just a operation example
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 10; }
static Singleton *m_Instance;
int m_Test;
};
Singleton *Singleton ::m_Instance = NULL;
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
Singleton ::DestoryInstance();
return 0;
}
这是最简单,也是最普遍的实现方式,也是现在网上各个博客中记述的实现方式,但是,这种实现方式,有很多问题,比如:没有考虑到多线程的问题,在多线程的情况下,就可能创建多个Singleton实例,以下版本是改善的版本。
实现二:
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
if (m_Instance == NULL )
{
Lock(); // C++没有直接的Lock操作,请使用其它库的Lock,比如Boost,此处仅为了说明
if (m_Instance == NULL )
{
m_Instance = new Singleton ();
}
UnLock(); // C++没有直接的Lock操作,请使用其它库的Lock,比如Boost,此处仅为了说明
}
return m_Instance;
}
static void DestoryInstance()
{
if (m_Instance != NULL )
{
delete m_Instance;
m_Instance = NULL ;
}
}
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 0; }
static Singleton *m_Instance;
int m_Test;
};
Singleton *Singleton ::m_Instance = NULL;
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
Singleton ::DestoryInstance();
return 0;
}
      此处进行了两次m_Instance == NULL的判断,是借鉴了Java的单例模式实现时,使用的所谓的“双检锁”机制。因为进行一次加锁和解锁是需要付出对应的代价的,而进行两次判断,就可以避免多次加锁与解锁操作,同时也保证了线程安全。但是,这种实现方法在平时的项目开发中用的很好,也没有什么问题?但是,如果进行大数据的操作,加锁操作将成为一个性能的瓶颈;为此,一种新的单例模式的实现也就出现了。
实现三:
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
return const_cast <Singleton *>(m_Instance);
}
static void DestoryInstance()
{
if (m_Instance != NULL )
{
delete m_Instance;
m_Instance = NULL ;
}
}
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 10; }
static const Singleton *m_Instance;
int m_Test;
};
const Singleton *Singleton ::m_Instance = new Singleton();
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
Singleton ::DestoryInstance();
}
      因为静态初始化在程序开始时,也就是进入主函数之前,由主线程以单线程方式完成了初始化,所以静态初始化实例保证了线程安全性。在性能要求比较高时,就可以使用这种方式,从而避免频繁的加锁和解锁造成的资源浪费。由于上述三种实现,都要考虑到实例的销毁,关于实例的销毁,待会在分析。由此,就出现了第四种实现方式:
实现四:
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
static Singleton m_Instance;
return &m_Instance;
}


int GetTest()
{
return m_Test++;
}
private:
Singleton(){ m_Test = 10; };
int m_Test;
};
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
}
以上就是四种主流的单例模式的实现方式。

相关评论

专题信息
    Visual C++是一个功能强大的可视化软件开发工具,是高等院校计算机及相关专业主要核心课程。 本教程对Visual C++ 的应用与开发进行了详细系统的介绍,内容主要包括:Visual C++程序的建立,菜单、工具栏和状态栏的创建,对话框和常用控件,窗口、文档与视图,图形绘制,数据库应用,多媒体技术等。 本教程以案例教学为主,各章节都附有大量的实例,并且操作步骤详细,有利于引导读者更好的消化、理解和实际应用本章节所学的知识内容,希望大家能多多支持中国站长网络学院!